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SEQUENTIAL CODI)NG OF INFORMATION PRODUCED BY
DISCRETE SOURCES WITH A FINITE MEMORY

V. N. Koshelev

ABSTRACT: A scheme of sequential coding of information
generated by a discrete source of the Markov type is
investigated. The coding can be carried out with an
arbitrary transmission coefficient S, where S is greater
than unity or less than unity, depending on whether or
not it is necessary to "compress" the information or
introduce additional redundancy to increase the reliability
of transmission through the channel. The upper limits for
the probability of error and the average number of
operations in the case of sequential decoding are derived.
An expression is found for the "computational entropy" of
the source Hcomp it is shown that the average number of

operations on a symbol is restricted to a constant which
for SH < C , where C is the "computational

comp comp comp
throughput" of the communication channel, does not depend
on the value of the coding delay.

INTRODUCTION /379*

This paper represents a generalization of well-known methods of

sequential coding and decoding to the case where the source of information

transmitted along the channel is described by a uniform Markov chain of order

m'. As the results show, sequential methods are suitable not only for coding

at the channel's input and decoding at its output, but also for direct coding

of the source's output into input signals of the channel, whereby decoding of

the channel's output permits recovering the information directly in the same

form in which it was generated by the source at the input.

in-particular, if the channel is noiseless, then the proposed scheme can

be used for statistical coding and decoding of sources which possess redundancy.

In the general case the output generated by the source can be "compressed" in-

-sofar as the statistical properties of the source and the channel permit this,
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or, the output can be "spread out" as much as is necessary to increase the

transmission's reliability.

Descriptions are given below of the coding and decoding algorithms, and

the methods of obtaining upper limits to the average number of operations and

the probable error produced upon reconstruction of the source's symbols at the

channel's output are also discussed.

2. Fundamental Derivations /380

A source of messages generates a sequence of informational symbols

{in}, n = 0, +1, +2 ... , each of which takes on values from some finite set

{i} - T. We associate ITm x ITim with this source as the matrix of transition

probabilities

P'm [e(d."~~~l, tame e309 >e(4)

such that for m - 2

and for (al
1

.. am-l) O= {2 f" «m)°

For fixed lm+l o..LoI
1

... 1n we will use the concise notation

Tmh+l"1- w n i. all.e n stue m,.

The whole number m is called the source's memory.
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A channel without a memory is determined by finite input and output

alphabets A = {a} and B = {b} and by the transition probability matrix

Q = aT c 7 -A, 6`E B

A random output signal a = (al ... an), a e A corresponds to the input signal

b = (b1 ... b), b e B, such that

It is assumed that the source's rate of operation relative to the channel /381

can be arbitrarily varied in such a way that during the time when the source is

generating a sequence consisting of u > 1 symbols, the channel has time to trans-

mit a sequence consisting of V > 1 symbols.

Direct sequential coding of a message ili2... into the input signal

ala2... for fixed symbols ili
0

is specified with the help of the function H

of ku and arguments for which sections of the message i_(k1l)u+ 1 o.iu,

i (k_2)u+l"' i2u and so on are used. The function can take on arbitrary values

from the Av space. Thus for any integral T > 1 some input signal

·-' *~.'i where 
,,,.. a il,... qi~t,4 TO ... qh 

is put into correspondence with the message iI is, etc. The elements

of the spaces Tv and A
v

are called, respectively, the message and signal blocks.v

The set of signal sequences {a. i possesses a tree-like structure and is
1 l~sn

called a tree with a length S blocks; TIu, consisting of blocks with a length

of V symbols, proceeds from each point of a branch of the tree, the apex.
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There corresponds to each block in a tree of length k its own set of arguments

of the coding function. The quantity k is called the coding delay. The ratio

S = u/v of the message block's length to the signal block's length will be

called the transmission coefficient; if S < 1, then the coding introduces an

additional redundancy into the signals being transmitted; if S > 1, then the /382

source's representation in the coding tree cannot be unique, and this case

corresponds to compression of the source, when a decrease in the redundant

information in the signal occurs in comparison with that which is contained in

the original message.

3. Decoding

Recovery of the original message from the signal obtained at the channel's

output is accomplished by the method of decoding according to the maximum of

the probability function calculated according to the combined distribution de-

fined by the product { source x channel ).

We will discuss the effects of the decoding algorithm associated with the

recovery of the first u symbols (i.e., of the first block) of the source. For

convenience in writing, we will denote the message executed by the source by

01 O2 .. in contrast to the arbitrary messages ili2 ...

The quantity

, ,P' 4~at6 t (1)

will serve as the criterion for.verifying a segment of the message i 1... isu

All the effects associated with the measurement and storage of this

quantity will be discussed as a single elementary decoding operation. We will

call an apex open if the criterion's value in it has already been calculated

but there is at least one among thel TV
u

apexes which follow directly after it

in which the criterion's value has not been determined. The remaining apexes /383

naturally, are broken up into closed ones and indeterminate ones.
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Algorithm. Prior to the start of decoding the zero-point apex (from which

IT U of the first blocks proceeds) is open, since the criterion is arbitrarily

set equal to unity in it. At the first decoding step the criterion in one of

the apexes of the tree's first level is calculated; at the second step the max-

imum among all the open apexes is selected and the criterion is calculated in

one of the apexes which directly follows after it. This procedure is continued

until one of the apexes of the tree's k-th level first fails to be the maximum

apex at some step. In this case the solution that the first block of the trans-

mitted signal is equal to the first block of the branch leading to this apex of

the k-th level is adopted. Accordingly the first u symbols of the source are

determined with this. The subsequent search is continued according to this

same rule, but now only in that part of the tree which proceeds from the de-

coded apex.

The complexity of decoding a single block is measured in a given case by

the number of apexes N1(0O 0 °ku-i b ; K) which are kept in the incorrect part

of the tree proceeding from the zero-point apex. One should add unity to this

number, since it corresponds to a check of the correct branch's first block.

4. Estimate of the Average Number of Operations and the Probability of an Error

Upper limit of the number N1(...). We will consider a k-level tree, i.e.,

a tree composed of initial segments of k branches with a length of k blocks. /384

We will take the correct branch of this tree and find the maximum value of the

criterion at its apexes. We will discuss the set of all apexes on which the

value of the criterion is less than this minimum. Evidently not a single one

of these apexes can turn out to be a maximum, i.e., cannot be selected as the

starting point for subsequent explorations. This follows from the fact that

at each step of the decoding there is only one apex among the set of all open

apexes which belongs to the correct branch (the zero-point apex can, in

particular, turn out to be it). Since before the start of each step, the

decoding device is shifted to an open apex with the maximum value of the

criterion, then only those apexes can be checked in an incorrect part of the

tree for which
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b4Yl aI ,, allp(t--Fw 

MiVIb"·% tut{& ao .n p(° to) 4B(2)

and also those which directly follow after the apexes would satisfy the condi-

tion in equation (2), and on which this condition first turns out to be

violated. Here and everywhere below one should assume that i ... i u 01 ... 0u

let

(. ~ , . )-, 1, if equation (2) is fulfilled

O, if (2) is not fulfilled. (3)

Then

%~e9~O

The coefficient TIu appears to be the first which violates the condition /385

of equation (2) because of the estimate of the number of apexes. Furthermore,

following the reference [1], we will estimate the function in equation (3) as

the quadratic root of the ratio of the left to the right parts of the inequality

(2), we are free of the function's minimum in the denominator of this ratio,

summing all the k + 1 rati'os over t = 01 k, and we average the right part of

the inequality (4) over the three probability ensembles, assuming them to be

independent: over the message ensemble, the ensemble of noise in the channel,

anid the ensemble of all tree-like codes, determining all the coding functions

with coding delay k and transmission coefficient S = u/v; it is assumed that

an equilibrium distribution corresponding to some distribution T(a) over the

input alphabet A is assigned in the last ensemble. As is well-known, an

important condition is fulfilled in the case of such a distribution over an

ensemble of tree-like codes. The condition consists of the fact that the
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correct branch of the tree a0 and the branches of the incorrect part
0 tu

of the tree a. , s,t = 1,k are mutually indlpendent.
I1 ·isu

As a result we obtain for the average value of the quantity N1(...) the

estimate

Cew t-^trc(&)- 'i )(o -2-(o-m~vtcco) VH't4J) (5)

Reproduced from
bes: available copy.

(see below for the notation).

By means of similar discussions we will arrive at an estimate of the

probability of an error (i.e., an event consisting of the fact that one of the

branches of the tree's incorrect part turned out to have all k of the first

apexes checked):

Pcalc S Sik ) -vi-8f[C(y)- SH(TJ]
9':-osa 1_2-n uftC(()-sh~2 (6) /386

The following notation is used in the estimates of equations (5) and (6);

*C(+s}= ` {m(<9VP

. .

1
Where Ep is the largest Eigenvalue of the matrix Pp, which is obtained if all

the elements are raised to the l/l+p-th power in the source's stochastic matrix

P, and Z d Zm i
n

are, respectively, the maximum and minimum components of
P P

the eigenvector of matrix P , corresponding to the maximum eigenvalue t.

We will call H(1) = Mcal and C(1) = Ccalc, respectively, the source's calculated

entropy and the channel's calculated throughput. In such a case we have proved

1 Symbol indicates eigenvalue.
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the following

Theorem. If S = u/v < C al /Mcalc then there exists a coding function

HI-lwith'e doding delay k and a transmission coefficient S, such that the average

number of ,decoding operations necessary for u symbols of the source satisfy

the inequality (5), and the probability of an error satisfies the inequality

(6,lin the case of the weakest condition S < C(o)/H(o), where

(l (' (, Cj and a 4n 1 ( hP , 

respectively, are the channel's throughput and the source's entropy. /387

In conclusion we note that the coding function K can be selected to be

linear in the case of the derived limitations for the alphabets A and B.
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